

Fifth Semester B.E. Degree Examination, December 2012

Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define a DFA and the languages accepted by it. (05 Marks)
 - b. Design a DFA to accept a string of a's and b's not ending with abb. (05 Marks)
 - c. Design a DFA which accepts odd number of 0's and odd number of 1's. (05 Marks)
 - d. Convert the following NFA to DFA. (05 Marks)

2 a. Write a note on applications of finite automata.

(04 Marks)

b. Define an \in - NFA and \in - closure.

- (04 Marks)
- c. Prove that for every regular expression, there exists a finite automation which accepts the same language accepted by the regular expression. (08 Marks)
- d. Give regular expressions for the following languages:
 - i) $L = \{W/W \text{ is in } \{a, b\}^* \text{ and } |W| \text{ mod } 3 = 0\}$
 - ii) $L = \{W/W \text{ is a string of even number of 0's followed by odd number of 1's}\}$. (04 Marks)
- 3 a. Prove that regular languages are closed under homomorphism.
- (05 Marks)

b. State and prove pumping lemma of regular languages.

- (05 Marks) (05 Marks)
- c. Prove that the language $L = \{WW^R : W \in \{a, b\}^*\}$ is not a regular language.
- d. Write a note on table filling method. When two states are equivalent or distinguishable?
 - (05 Marks)

- 4 a. Define the following terms:
 - i) Leftmost derivation
 - ii) Rightmost derivation
 - iii) Sentential form
 - iv) Yield of a tree
 - v) Parsing (05 Marks)
 - b. Design a context free grammar for the language $L = \{W = W^R : W \text{ is in } \{a, b\}^*\}$ (05 Marks)
 - c. Design a context free grammar for the language $L = \{a^n b^m c^k \text{ where } k = m + n, n, m, k \ge 0\}.$

(05 Marks)

- d. Show how ambiguity in grammars are verified with an example.
- (05 Marks)

PART – B

5 a. Explain the working of a PDA with a diagram.

(05 Marks)

b. Design a PDA for accepting a²ⁿbⁿ.

- (05 Marks)
- c. Define two languages of a PDA. Show that they are equivalent.

(05 Marks)

d. Convert the following CFG to PDA:

$$E \rightarrow E + E \mid E * E \mid id$$
.

(05 Marks)

10CS56

6	a.	Define CNF. Give an example.	(05 Marks)
	b.	Define the following:	
		i) Generating symbol	
		ii) Reachable symbol	
		iii) Unit production	
		iv) Null production	
		v) Nullable production	(05 Marks)
	c.	Convert the following CFG to CNF:	
		$E \rightarrow E + E \mid E * E \mid (E) \mid id.$	(05 Marks)
	d.	Show that a ⁿ b ⁿ c ⁿ is not a context free language using pumping lemma of CFL.	(05 Marks)
7	a.	Define a Turing machine. Explain the working of a Turing machine.	(06 Marks)
	b.	Design a Turing machine to accept a ⁿ b ⁿ c ⁿ .	(08 Marks)
	c.	Show that a multi tape TM is equivalent to a basic TM.	(06 Marks)
8	a.	Write a detailed not on halting problem of Turing machine.	(06 Marks)
	b.	Prove that complement of a recursively enumerable language is recursive.	(06 Marks)
	c.	Write a note on universal Turing machine and show that simulate a computer.	(08 Marks)

* * * * *